## Low-temperature, clean catalytic combustion of N-bearing gasified biomass using a novel NH<sub>3</sub> trapping catalyst

## Robert Burch and Barry W. L. Southward\*

School of Chemistry, The Queen's University of Belfast, Belfast, UK BT9 5AG. E-mail: b.w.l.southward@qub.ac.uk

Received (in Cambridge, UK) 3rd April 2000, Accepted 11th May 2000 Published on the Web 8th June 2000

Substantially reduced NO<sub>x</sub> emissions are obtained in the low temperature catalytic combustion of NH<sub>3</sub>-bearing simulated biogas by use of a novel 1%Pt/20%CuO/Al<sub>2</sub>O<sub>3</sub>-trapping catalyst and cyclic operation between fuel lean and rich conditions.

The exploitation of renewable energy sources to both limit CO<sub>2</sub> emissions and extend fossil fuel reserves is a subject of considerable interest with the former aspiration being embodied in the landmark Kyoto agreement.<sup>1</sup> This interest is exemplified by the various attempts to harness biomass-derived fuels for combined heat and power generation.<sup>2–7</sup> However, during gasification, biogenic nitrogen, fixed during plant growth, is converted into significant quantities of NH<sub>3</sub> (600–4000 ppm) in addition to the main fuel components, CO (9.8–17.2%) and H<sub>2</sub> (9.8–13.2%) as well as CH<sub>4</sub>, CO<sub>2</sub>, H<sub>2</sub>O and N<sub>2</sub>.<sup>2</sup> The presence of this NH<sub>3</sub> is a particular obstacle to the exploitation of biogas as a fuel since its combustion in a conventional burner results in the formation of significant amounts of nitrogen oxides (NO<sub>x</sub>) which are well-known atmospheric pollutants.<sup>8</sup>

Attempts to overcome this problem by catalytic combustion of the NH<sub>3</sub>/fuel mix have met with limited success with N<sub>2</sub> yields of <70% being typical.<sup>3,4</sup> In contrast, we have demonstrated substantially improved performance using either redox-acid catalysts, such as 12-tungstophosphoric acid which yield *ca*. 85% N<sub>2</sub>,<sup>5</sup> or by use of a catalyst which can couple NH<sub>3</sub> oxidation and NO<sub>x</sub> reduction using the fuel components of the biogas mixture<sup>6</sup> giving close to 100% N<sub>2</sub> selectivity. However, in order to achieve these high conversions of NH<sub>3</sub> to N<sub>2</sub>, both catalysts must be operated at temperatures  $\ge 600$  °C. We have now discovered for the first time a procedure for the selective oxidation of NH<sub>3</sub> to N<sub>2</sub> in simulated biogas, which can operate at temperatures as low as 200 °C.

The catalyst used was 1%Pt/20%CuO/Al<sub>2</sub>O<sub>3</sub> (hereafter referred to as PtCu) prepared by sequential incipient wetness impregnation of Al<sub>2</sub>O<sub>3</sub> (Criterion CK300, surface area 200 m<sup>2</sup>  $g^{-1}$ ). The dried Al<sub>2</sub>O<sub>3</sub> (120 °C, 24 h) was first impregnated with CuSO<sub>4</sub>·5H<sub>2</sub>O (ex Aldrich 98%) dried (24 h at room temperature, 24 h at 120 °C), and calcined (500 °C, 24 h). The process was repeated for the addition of 1% Pt (PtDNDA<sub>aq</sub> ex Johnson Matthey, 2.28% Pt). The preparation of 1%Pt/Al<sub>2</sub>O<sub>3</sub> was performed in an identical manner. Catalyst testing (60 mg) was performed in a standard quartz flow microreactor described previously<sup>7</sup> at a gas flow rate of 300 cm<sup>3</sup> min<sup>-1</sup>, (GHSV of *ca*. 240 000 h<sup>-1</sup>). NO<sub>x</sub> emissions and residual NH<sub>3</sub> levels were determined using an external NH3 oxidation reactor (with independent oxygen supply) coupled to a  $NO_x$  chemiluminescence detector (Signal series 4000 with data logging at 1 s intervals using Signal SIGLOG). Switching between lean and rich fuel conditions was achieved using a pressure-balanced three-way value immediately prior to the  $O_2$  mass flow controller. This enabled the oxidant to be 'switched' from 20%  $O_2$ /He (lean conditions) to 1% $O_2$ /He (rich conditions).

Fig. 1 illustrates both the lean steady state and switching activity of the PtCu for the oxidation of NH<sub>3</sub> under comparatively mild conditions (1000 ppm NH<sub>3</sub>, 1.02% CO, 0.68% H<sub>2</sub>). The steady-state N<sub>2</sub> yield was *ca*. 94%, already a significant improvement upon previous data<sup>3,4</sup> and is ascribed to the establishment of an *internal selective catalytic reduction* (*i*SCR) mechanism<sup>5,7</sup>

However, unlike previous metal and metal oxide systems for NH<sub>3</sub> oxidation, the PtCu catalyst is unique and may be considered to be a composite material with a strong synergy between two very specific but different active sites. Pt provides the first site whose function is the activation of NH<sub>3</sub>, which has been shown to be the rate limiting step of the *i*SCR reaction.<sup>7,9,10</sup> The second site then resides on the Cu, which adsorbs NH<sub>3</sub> to produce an NH<sub>x</sub>(ads) species (as shown by NH<sub>3</sub> TPD<sup>11</sup>) These NH<sub>x</sub>(ads) species then react with the NO<sub>x</sub> formed on the Pt to give N<sub>2</sub>, consistent with the proposals of Janssen *et al.*<sup>12</sup>

The synergistic effect is particularly apparent when comparing the activity of the PtCu with both 10% Cu/Al<sub>2</sub>O<sub>3</sub> and 1% Pt/ Al<sub>2</sub>O<sub>3</sub>. 10% Cu/Al<sub>2</sub>O<sub>3</sub> was found to require temperatures of *ca*. 400 °C to produce high yields of N<sub>2</sub> (>90%) while although 1% Pt/Al<sub>2</sub>O<sub>3</sub> was active at lower temperatures it gave only a very low selectivity (*ca*. 29% N<sub>2</sub> at 200 °C).

The high N<sub>2</sub> yields of the PtCu were further improved by transient switching of the oxidant (15 s rich, 45 s lean). Indeed, by switching it was possible to obtain peak N<sub>2</sub> yields of 100% before N<sub>2</sub> production decreased over some 500 s to the values obtained under steady state conditions. This reflects the buffering of the system *via* the reservoir of NH<sub>x</sub>(ads) species on the Cu. Under lean conditions these species are 'titrated' by *in situ* NO but in the absence of sufficient O<sub>2</sub> for full reaction the Cu accumulates an NH<sub>x</sub>(ads) adsorbate layer, thus preventing NH<sub>3</sub> 'slip'.

The importance of transient operation is seen even more clearly when we compare the activities of 1% Pt/Al<sub>2</sub>O<sub>3</sub> with the PtCu catalyst in a more realistic feed stream containing high levels of the fuel components (5.1% CO and 3.4% H<sub>2</sub>) (Fig. 2). In this case under lean conditions NH<sub>3</sub> conversion was again 100%, but in both cases NH<sub>3</sub> was predominantly converted into NO, reflecting an interception of any NO–NH<sub>3</sub> reaction. Moreover, as can be seen in Fig. 2 (filled diamonds) oxidant



**Fig. 1** N<sub>2</sub> production from the selective catalytic oxidation of NH<sub>3</sub>/CO/H<sub>2</sub> over 1%Pt/20%CuO/Al<sub>2</sub>O<sub>3</sub> at 200 °C (1000 ppm NH<sub>3</sub>, 1.02% CO, 0.68% H<sub>2</sub>, with either 2.1% O<sub>2</sub> (lean conditions) or 0.1% O<sub>2</sub> (rich conditions), balance He). Key: i, first 200 s of operation is under lean conditions; ii, cyclic operation 15 s rich/45 s lean for 300 s; iii, final 500 s operation is under lean conditions.



**Fig. 2** N<sub>2</sub> production from the selective catalytic oxidation of NH<sub>3</sub>/CO/H<sub>2</sub> over 1%Pt/Al<sub>2</sub>O<sub>3</sub> and 1%Pt/20%CuO/Al<sub>2</sub>O<sub>3</sub> at 200 °C (1000 ppm NH<sub>3</sub>, 5.1% CO, 3.4% H<sub>2</sub>, 9.3% O<sub>2</sub> (lean conditions) or 0.5% O<sub>2</sub> (rich conditions), balance He). Key: i, first 180 s operation is lean; ii, cyclic operation 30 s rich/30 s lean for 300 s; iii, final operation under lean conditions. ( $\blacklozenge$ ) 1% Pt/Al<sub>2</sub>O<sub>3</sub>, ( $\bullet$ ) 1%Pt/20%CuO/Al<sub>2</sub>O<sub>3</sub>.

cycling had a minimal effect on  $N_2$  yields for the 1%Pt/Al<sub>2</sub>O<sub>3</sub> catalyst. In contrast, with the PtCu catalyst (filled circles), under transient conditions there was a sudden and dramatic improvement in catalyst selectivity, with >98%  $N_2$  production being recorded.

These observations are entirely consistent with the proposed *i*SCR reaction, and may be rationalised as follows: in the case of the PtCu sample only, on switching to rich operation, the CuO was partially reduced by NH<sub>3</sub> to produce a reservoir of NH<sub>x</sub>(ads). Then, on switching to lean conditions, all the gas phase NH<sub>3</sub> was again fully oxidised to NO on the Pt, but the NO formed is reduced to N<sub>2</sub> by NH<sub>x</sub>(ads) on the Cu. However, this reduction process is limited by the concentration of NH<sub>x</sub>(ads) and once these species are consumed excess NO is observed, in agreement with our experimental observations.

Further evidence of the trapping mechanism is found by examination of the effect of switching time on activity. Fig. 3 illustrates the activity of PtCu, under dilute fuel conditions at 200 °C when the rich phase is extended to 120 s. Again the initial increase in N<sub>2</sub> is observed (*cf.* Fig. 1). However, extending the period under rich conditions leads to a saturation of the trap and the breakthrough of NH<sub>3</sub>/loss of N<sub>2</sub>, clearly demonstrating the link between cyclic operation and high N<sub>2</sub> yields.

In conclusion, we have developed a potential strategy for the low-temperature removal of  $NH_3$  from biomass-derived gases by the cyclic operation of a regenerable  $NH_3$  trap catalyst which facilitates an *i*SCR-type reaction. Experiments have demonstrated that the concept is viable and provides a further novel method to overcome the environmental problems associated with the direct combustion of biogas. The strategy may be equally applicable to any comparable gasification gas derived from coal, or other renewable source. The concept is a further example of the advantages which may be gained by forcing catalysts to work harder by periodic perturbation of the reaction conditions.<sup>13–15</sup>



**Fig. 3** N<sub>2</sub> production from the selective catalytic oxidation of NH<sub>3</sub>/CO/H<sub>2</sub> over 1%Pt/20%CuO/Al<sub>2</sub>O<sub>3</sub> at 200 °C (1000 ppm NH<sub>3</sub>, 1.02% CO, 0.68% H<sub>2</sub>, with either 2.1% O<sub>2</sub> (lean conditions) or 0.1% O<sub>2</sub> (rich conditions), balance He). Key: i, first 180 s of operation is under lean conditions; ii, rich operation for 120 s; iii, final 500 s operation is under lean conditions.

We are pleased to acknowledge the financial support of ABB-Alstom power, DTI, and EPSRC through the FORE-SIGHT Challenge initiative. Helpful discussions with colleagues at Lens (Dr M. Amblard), Cranfield University (Mr J. J. Witton, Professor B. Moss, Mr J. M. Przybylski and Dr E. Noordally) and at ABB-Alstom Power (Mr M. Cannon, G. J. Kelsall) are gratefully acknowledged.

## Notes and references

- 1 Kyoto Protocol to the United Nations Framework Convention on Climate Change, Kyoto, Japan, 1–10 December, 1997.
- 2 Development of Improved Stable Catalysts and Trace Element Capture for Hot Gas Cleaning, DTI / ETSU / Clean Coal Power Generation Group, Project Profile 178, Harwell, Oxfordshire, 1996.
- 3 L. Lietti, C. Groppi and C. Ramella, Catal. Lett., 1998, 53, 91.
- 4 M. F. M. Zwinkels, G. M. Eloise Heginuz, B. H. Gregertsen, K. Sjöström and S. G. Järås, *Appl. Catal. A Gen.*, 1997, **148**, 325.
- 5 R. Burch and B. W. L. Southward, *Chem. Commun.*, 1999, 1475.
  6 R. Burch and B. W. L. Southward, *Br. Pat. Appl.*, 98238879.3, 1998; R. Burch and B. W. L. Southward, *Chem. Commun.*, 2000, 703.
- 7 M. Amblard, R. Burch and B. W. L. Southward, *Appl. Catal. B Environ.*, 1999. 22, L159.
- 8 P. J. Millington, PhD Thesis, University of Reading, 1995.
- 9 M. Amblard, PhD Thesis, University of Reading, 1999.
- 10 N. I. Il'chenko and G. I. Golodets, J. Catal., 1975, 39, 57; N. I. Il'chenko and G. I. Golodets, J. Catal., 1975, 39, 73.
- 11 R. Burch and B. W. L. Southward, J. Catal., submitted.
- 12 F. J. J. G. Janssen, F. M. G. van den Kerkhof, H. Bosch and J. R. H. Ross, *J. Phys. Chem.*, 1987, **91**, 5921; F. J. J. G. Janssen, F. M. G. van den Kerkhof, H. Bosch and J. R. H. Ross, *J. Phys. Chem.*, 1987, **91**, 6633.
- 13 R. Burch, P. Fornasiero and B. W. L. Southward, J. Catal., 1999, 182, 234.
- 14 D. J. Crittle, PhD Thesis, University of Reading, 1999.
- 15 Eur. Pat., EP 573 672A1, 1992 (to Toyota).